JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy.

The clinical progression of Duchenne muscular dystrophy (DMD) patients with deletions can be predicted in 93% of cases by whether the deletion maintains or disrupts the translational reading frame (frameshift hypothesis). We have identified and studied a number of patients who have deletions that do not conform to the translational frame hypothesis. The most common exception to the frameshift hypothesis is the deletion of exons 3 to 7 which disrupts the translational reading frame. We identified a Becker muscular dystrophy (BMD) patient, an intermediate, and a DMD patient with this deletion. In all three cases, dystrophin was detected and localized to the membrane. One DMD patient with an inframe deletion of exons 4-18 produced no dystrophin. One patient with a mild intermediate phenotype and a deletion of exon 45, which shifts the reading frame, produced no dystrophin. Two patients with large inframe deletions had discordant phenotypes (exons 3-41, DMD; exons 13-48, BMD), but both produced dystrophin that localized to the sarcolemma. The DMD patient, 113, indicates that dystrophin with an intact carboxy terminus can be produced in Duchenne patients at levels equivalent to some Beckers. The dystrophin analysis from these patients, together with patients reported in the literature, indicate that more than one domain can localize dystrophin to the sarcolemma. Lastly, the data shows that although most patients show correlation of clinical severity to molecular data, there are rare patients which do not conform.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app