COMPARATIVE STUDY
JOURNAL ARTICLE

Comprehensive analysis of dynamic elastic response feet: Seattle Ankle/Lite Foot versus SACH foot

J F Lehmann, R Price, S Boswell-Bessette, A Dralle, K Questad
Archives of Physical Medicine and Rehabilitation 1993, 74 (8): 853-61
8347071
This study evaluated biomechanical and metabolic performance differences between two prosthetic foot designs in light of their mechanical properties. Ten unilateral below-knee amputee subjects, at least 1 year after amputation, capable of walking and running, were studied. Differences in heel and forefoot compliance explained differences in gait events and alignment. Increased efficiency of pushoff in the Seattle Ankle/Lite Foot exists as evidenced by the decrease loading on the opposite limb during double support and a less shortened step length on the sound side compared to the SACH foot. The natural frequency of oscillation for the prosthetic feet was determined to be too high to provide energy storage and release synchronized with kinematic requirements because neither metabolic cost savings nor differences in metabolic efficiency were found. Comfortable walking speed and the nadir of metabolic rate and efficiency are not different. Via accelerometer measurement, it was found that the more compliant and lossy SACH foot heel was less likely to transmit high frequency vibration.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
8347071
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"