Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Body composition following hemodialysis: studies using dual-energy X-ray absorptiometry and bioelectrical impedance analysis.

The detection, prevention and treatment of disease is greatly facilitated by the availability of accurate and non-invasive techniques for measuring the amount and regional distribution of fat mass and fat-free mass. As differing degrees of hydration may influence these measurements, we used dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA) to detect changes in hydration following hemodialysis, and to determine whether fat mass, fat-free mass and bone density measurements were affected by these fluid changes. Ten subjects (7 men, 3 women) mean age 46.2 years (range 25-68 years), with renal failure had bone density, fat-free mass and fat mass measured by DXA, and total body water and fat-free mass measured by BIA, before and after hemodialysis. Thirty-two subjects had fat-free mass measured by DXA and BIA in an attempt to derive new equations (using fat-free mass measured by DXA as the reference standard) to improve the predictive value of BIA. The new equations were then used to derive the changes in fat-free mass following hemodialysis measured using BIA. In absolute terms, total tissue measured by DXA (r = 0.99, p = 0.01) and total body water measured by BIA (r = 0.91, p = 0.01) correlated with gravimetric weight. Following hemodialysis, fat mass and bone density measured by DXA were unaffected by the fluid changes. The change in gravimetric weight was 1.8 +/- 0.3 kg, p = 0.01 (mean +/- SEM). This change was measured as 1.9 +/- 0.3 kg by DXA, -0.9 +/- 1.0 kg by BIA using the published equation for fat-free mass, and 3.2 +/- 0.4 kg using the new equation for fat-free mass.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app