COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites.

Plant Journal 1993 Februrary
Nitrate (NR) and nitrite reductase (NiR) catalyse the reduction of nitrate to ammonium. The regulation of NR and NiR gene expression by carbohydrates (C) and nitrogen (N) metabolites was studied using detached leaves. In the dark, glucose fructose and sucrose supplied to detached green leaves of dark-adapted Nicotiana plumbaginifolia plants resulted in NR mRNA and protein accumulation and the loss of circadian rhythmicity in the size of the transcript pool. The characterization of transgenic plants expressing either a NR cDNA controlled by the 35S CaMV promoter or a transcriptional fusion between the tobacco nia1 (NR structural gene) promoter and the beta-glucuronidase reporter gene, led us to conclude that C metabolite control is taking place at the transcriptional level. Under low light conditions (limiting photosynthetic conditions), the supply of glutamine or glutamate resulted in a drop in the level of NR mRNA. Exogenously supplied carbohydrates partially antagonized this inhibitory effect suggesting that the availability of N and C metabolites affects the expression of the NR gene. The effects of carbohydrates and glutamine on NiR expression were also studied. NiR mRNA levels in the dark were relatively insensitive to feeding with glucose. Glutamate and glutamine were less efficient at decreasing NiR mRNA than NR mRNA levels. In contrast to NR, NiR mRNA levels were significantly increased by light treatments, indicating that NiR display regulatory characteristics reminiscent of photosynthetic genes such as the small subunit of ribulose bisphosphate carboxylase than to NR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app