JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Smooth muscle from aganglionic bowel in Hirschsprung's disease impairs neuronal development in vitro.
Cell and Tissue Research 1994 April
Hirschsprung's disease results from the congenital absence of enteric neurons in human distal colon. The reason for aganglionosis is unknown but may reflect an unfavourable microenvironment for neuronal development. We asked if smooth muscle cells from the anganglionic region could affect neuronal development in vitro. Neurons from neonatal mouse superior cervical ganglia were added to cultures of smooth muscle obtained from normal or aganglionic regions of five patients with Hirschsprung's disease. Although neurons initially showed more rapid attachment to aganglionic smooth muscle, this was equal by 60 min and thereafter. Progressive increase in the diameter of the nerve cell body was characteristic of normal maturation in vitro. This was consistently inhibited by 15-22% in neurons grown on aganglionic muscle compared with normal controls over the 6-day test period (P < 0.05). This phenomenon was preserved when the smooth muscle cells were lysed by brief exposure to distilled water before initiation of co-culture (16-18% inhibition; P < 0.05). These data imply that smooth muscle of the aganglionic colon is less favourable for neuronal development than the normally innervated region and suggest a membrane-linked factor. Clearly, this persists in postnatal life and in vitro and may reflect an abnormality of cellular interaction causing Hirschsprung's disease.
Full text links
Trending Papers
Assessment and management of heart failure in patients with chronic kidney disease.Heart Failure Reviews 2023 September 21
Beta-blocker therapy in patients with acute myocardial infarction: not all patients need it.Acute and critical care. 2023 August
Management of epilepsy during pregnancy and lactation.BMJ : British Medical Journal 2023 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app