Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants.

The permissivity of adult olfactory bulb to the ingrowth of olfactory axons could be due to the unique properties of ensheathing glia. To test whether these glial cells could be used to promote axonal regeneration in a spontaneously nonregenerating system, we transplanted suspensions of pure ensheathing cells into a rhizotomized spinal cord segment. Ensheathing cells were purified away from other cell types by immunoaffinity, using anti-p75 nerve growth factor receptor. After laminectomy at the lower thoracic level, the spinal cord was exposed and one dorsal root (T10) was completely transected at the cord entry point. The root stump was microsurgically anastomosed to the cord and a suspension of ensheathing cells was transplanted in the spinal cord at the dorsal root entry zone. Three weeks after transplantation, numerous regenerating dorsal root axons were observed reentering the spinal cord. Ingrowth of dorsal root axons was observed using DiI and antibodies against calcitonin gene-related peptide and growth-associated protein. Primary sensory afferents invaded laminae 1, 2, and 3, grew through laminae 4 and 5, and reached the dorsal grey commissure and lamina 4 of the contralateral side. We did not observe regenerating axons within the ipsilateral ventral horn and dorsal column. Transplanted ensheathing cells reached the same laminae as axons. Neither ensheathing cells nor regenerating axons invaded those laminae they did not innervate under normal circumstances. In conclusion, the regeneration of injured dorsal root axons into the adult spinal cord was possible after ensheathing glia transplantation. The use of ensheathing cells as stimulators of axonal growth might be generalized to other central nervous system injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app