An optimal three-stage design for phase II clinical trials

L G Ensign, E A Gehan, D S Kamen, P F Thall
Statistics in Medicine 1994 September 15, 13 (17): 1727-36
A phase II clinical trial in cancer therapeutics is usually a single-arm study to determine whether an experimental treatment (E) holds sufficient promise to warrant further testing. When the criterion of treatment efficacy is a binary endpoint (response/no response) with probability of response p, we propose a three-stage optimal design for testing H0: p < or = p0 versus H1: p > or = p1, where p1 and p0 are response rates such that E does or does not merit further testing at given levels of statistical significance (alpha) and power (1--beta). The proposed design is essentially a combination of earlier proposals by Gehan and Simon. The design stops with rejection of H1 at stage 1 when there is an initial moderately long run of consecutive treatment failures; otherwise there is continuation to stage 2 and (possibly) stage 3 which have decision rules analogous to those in stages 1 and 2 of Simon's design. Thus, rejection of H1 is possible at any stage, but acceptance only at the final stage. The design is optimal in the sense that expected sample size is minimized when p = p0, subject to the practical constraint that the minimum stage 1 sample size is at least 5. The proposed design has greatest utility when the true response rate of E is small, it is desirable to stop early if there is a moderately long run of early treatment failures, and it is practical to implement a three-stage design. Compared to Simon's optimal two-stage design, the optimal three-stage design has the following features: stage 1 is the same size or smaller and has the possibility of stopping earlier when 0 successes are observed; the expected sample size under the null hypothesis is smaller; stages 1 and 2 generally have more patients than stage 1 of the two-stage design, but a higher probability of early termination under H0; and the total sample size and criteria for rejection of H1 at stage 3 are similar to the corresponding values at the end of stage 2 in the two-stage optimal design.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"