Add like
Add dislike
Add to saved papers

The pathogenesis of gait hypokinesia in Parkinson's disease.

Brain 1994 October
To identify the fundamental deficit in gait hypokinesia in Parkinson's disease (PD) we conducted a series of experiments that compared PD subjects with age- and height-matched controls in their capacity to regulate either stride length, cadence (steps per minute) or both parameters to three conditions. In the first condition the spatial and temporal parameters of gait were documented for slow, normal and fast walking. The second condition compared parkinsonian gait with the walking pattern of elderly controls whilst controlling for two movement speeds: fast (control preferred) speed and slow (PD preferred) speed. In the third condition we examined the ability of PD subjects to regulate one parameter (e.g. stride length) when the other two parameters (e.g. velocity and cadence) were held at control values. A total of 34 PD subjects and 34 matched controls were tested using a footswitch stride analysis system that measured the spatial and temporal parameters of gait for a series of 10 m walking trials. Parkinsonian subjects exhibited marked gait hypokinesia in each of the experiments. Although they retained the capacity to vary their gait velocity in a similar manner to controls, their range of response was reduced. Within the lower velocity range, PD subjects could vary their speed of walking by adjusting cadence and, to a lesser extent, stride length. However, when the speed of walking was controlled, the stride length was found to be shorter and the cadence higher in PD subjects than in controls. Stride length could not be upgraded by internal control mechanisms in response to a fixed cadence set for age and height-matched velocity. In contrast, cadence was readily modulated by external cues and by internal control mechanisms when stride length was fixed to the values obtained for age- and height-matched controls. It was concluded that regulation of stride length is the fundamental problem in gait hypokinesia and the relative increase in cadence exhibited by PD subjects is a compensatory mechanism for the difficulty in regulating stride length. These findings are discussed in the context of the hypothesized role of the basal ganglia in generating internal cues for the maintenance of the gait sequence and in relation to the structuring of movement rehabilitation strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app