JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.

1. The effects of repetitive stimulation of primary afferents in lumbar dorsal roots on synaptic transmission in the dorsal horn (DH) were studied in a rat spinal cord slice-dorsal root ganglion (DRG)-peripheral nerve trunk preparation by the use of intracellular recording from neurons (n = 115) of the spinal dorsal horn (depth 147 +/- 139, mean +/- SD). All DH neurons were excited synaptically by electrical stimulation of the dorsal root or the peripheral nerve trunk. The electrical shocks were calibrated to produce activation either of large fibers (10-20 V, 0.02 ms) or the whole fiber population including unmyelinated afferents (supramaximal stimulus: > 35 V, 0.5 ms). Postsynaptic potentials induced by low intensity repetitive stimulation of primary afferents at frequencies below 5 Hz failed to produce a prolonged change in the resting membrane potential. In 97/115 DH neurons, slow excitatory postsynaptic potentials (EPSP)--evoked by high intensity low-frequency repetitive stimulation (0.1-2 Hz) of primary afferents--summated, producing a prolonged cumulative depolarization. In the remaining 18/115 DH neurons, high intensity low-frequency stimulation produced a cumulative hyperpolarizing response. 2. In 22 of 97 neurons that responded to high intensity repetitive stimulation with a cumulative depolarization, wind-up in the firing of action potentials was recorded. In all but two experiments, neurons that responded with wind-up to stimulation of one root responded with wind-up to stimulation of the adjacent dorsal root. In 14/22 wind-up neurons, the synaptic response to high intensity stimulation of primary afferents was composed of a short latency EPSP, followed by an inhibitory postsynaptic potential (IPSP), followed by a slow EPSP. The decrease of the amplitude and duration of the IPSP obtained during train stimulation did not seem to contribute to facilitation of transmission induced by repetitive stimulation. 3. The wind-up in firing of action potentials was followed by a prolonged potentiation of synaptic transmission in tetanized synapses. A test of other, adjacent primary afferents revealed that these synapses in the neurons in the superficial laminae had not undergone potentiation. This "synaptic specificity" of post-wind-up potentiation suggested that the mechanism for the induction of stimulation-dependent changes in the excitability of the DH neuron is presynaptic to the recorded-from neuron. 4. In a concentration of 0.5 microM and higher, tetrodotoxin (TTX) applied to sensory neurons selectively blocked action potentials in large myelinated primary afferents.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app