We have located links that may give you full text access.
Journal Article
Research Support, U.S. Gov't, P.H.S.
Arsenate perturbation of human keratinocyte differentiation.
Cell Growth & Differentiation : the Molecular Biology Journal of the American Association for Cancer Research 1994 November
Treatment of cultured malignant human keratinocytes with sodium arsenate greatly suppressed expression of involucrin, a specific marker of keratinocyte differentiation. This action was primarily attributable to inhibition of involucrin transcription according to message run-on and stability measurements. Involucrin was suppressed in nontumorigenic keratinocytes as well, although the efficacy of suppression was less dramatic in cells derived from clinically normal epidermis. Several transition metal oxyanions (vanadate, molybdate, and tungstate) also substantially suppressed involucrin expression, but okadaic acid was ineffective. Immunoblotting detected marked increases in tyrosine phosphorylation of several proteins as a consequence of arsenate treatment of the cultures, while mobility shift analysis revealed a dramatic loss of DNA binding by the transcription factor AP2. These findings support a proposed role for altered levels of protein tyrosine phosphorylation in keratinocyte differentiation. They also suggest that arsenate perturbs the differentiation program in target cells by altering this phosphorylation level and transcription factor activity.
Full text links
Related Resources
Trending Papers
Catastrophic Antiphospholipid Syndrome: A Review of Current Evidence and Future Management Practices.Curēus 2024 September
Paroxysmal Nocturnal Hemoglobinuria, Pathophysiology, Diagnostics, and Treatment.Transfusion Medicine and Hemotherapy 2024 October
2024 Guideline for the Primary Prevention of Stroke: A Guideline From the American Heart Association/American Stroke Association.Stroke; a Journal of Cerebral Circulation 2024 October 21
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app