Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Relative kinetic frictional forces between sintered stainless steel brackets and orthodontic wires.

The level of kinetic frictional forces generated during in vitro translation at the bracket-wire interface were measured for two sintered stainless steel brackets as a function of two slot sizes, four wire alloys, and five to eight wire sizes. The two types of sintered stainless steel brackets were tested in both 0.018-inch and 0.022-inch slots. Wires of four different alloy types, stainless steel (SS), cobalt chromium (Co-Cr), nickel-titanium (Ni-Ti), and beta-titanium (beta-Ti), were tested. There were five wire sizes for the 0.018-inch slot and eight wire sizes for the 0.022-inch slot. The wires were ligated into the brackets with elastomeric ligatures. Bracket movement along the wire was implemented by means of a mechanical testing instrument, and time dependent frictional forces were measured by a load cell and plotted on an X-Y recorder. For most wire sizes, lower frictional forces were generated with the SS of Co-Cr wires than with the beta-Ti or Ni-Ti wires. Increase in wire size generally resulted in increased bracket-wire friction. There were no significant differences between manufacturer for the sintered stainless steel brackets. The levels of frictional force in 0.018-inch brackets ranged from a low of 46 gm with 0.016-inch Co-Cr wire to a high of 157 gm with 0.016 x 0.025-inch beta-Ti wire. In comparing the data from a previous study by Kapila et al. 1990 performed at OUHSC with the same apparatus, the friction of sintered stainless steel brackets was approximately 40% to 45% less than the friction of the conventional stainless steel brackets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app