JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching.

In a spinal turtle, unilateral stimulation in the rostral scratch receptive field elicited rhythmic fictive rostral scratching in ipsilateral hindlimb motor neurons; contralateral hip motor activity was also rhythmic and out-of-phase with ipsilateral hip motor activity. When left and right rostral scratch receptive fields were stimulated simultaneously, bilateral rhythmic fictive rostral scratching was produced; left hindlimb scratching was out-of-phase with right hindlimb scratching. Thus, spinal circuits coordinate interlimb phase during bilateral fictive scratching. We examined the contributions of contralateral spinal circuitry to the normal pattern of right hindlimb fictive rostral scratching by removing the left halves of the D7 segment and the hindlimb enlargement (D8-S2 segments). After left-hemicord removal, stimulation in the right rostral scratch receptive field usually elicited a variation of rostral scratching with rhythmic right hip flexor activity and no right hip extensor activity; thus, right hip flexor rhythm generation does not require left hindlimb enlargement circuitry. Normal right hindlimb rostral scratching with rhythmic alternation between hip flexor and extensor activities was rarely observed; thus, contralateral spinal circuitry contributes to the production of normal ipsilateral fictive rostral scratching. After left-hemicord removal, stimulation in the left rostral scratch receptive field elicited rhythmic right hip extensor activity; thus, contralateral spinal circuitry can generate a hip extensor rhythm during ipsilateral rostral scratch receptive field stimulation. Our observations and those of Berkowitz and Stein (1994a,b) support the concept that an ipsilateral hindlimb's normal rostral scratch motor pattern is generated by a modular central pattern generator that is bilaterally distributed in the spinal cord.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app