In Vitro
Journal Article
Add like
Add dislike
Add to saved papers

Roles of GABAA, NMDA and muscarinic receptors in induction of long-term potentiation in the medial and lateral amygdala in vitro.

Neuroscience Research 1995 Februrary
We have studied mechanisms underlying long-term potentiation (LTP) in the medial and lateral amygdala using in vitro slice preparations. In normal bathing medium, LTP was not induced by tetanic stimulation (100 pulses at 100 Hz). However, in the presence of a GABAA blocker, picrotoxin or bicuculline, LTP was reproducibly induced in both medial and lateral amygdala. In the medial amygdala, the LTP induced in the presence of picrotoxin was blocked by 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and was significantly reduced by scopolamine, a muscarinic receptor antagonist. On the other hand, the LTP in the lateral amygdala was not affected by APV, but was significantly reduced by scopolamine. These results suggest that both NMDA receptors and muscarinic receptors are involved in the induction of medial amygdala LTP, while muscarinic receptors, but not NMDA receptors, are involved in the induction of lateral amygdala LTP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app