RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Chick wing innervation. I. Time course of innervation and early differentiation of the peripheral nerve pattern.

Anterograde transport of horseradish peroxidase was used to map the initial projection patterns of motor and sensory axons innervating the wing of the chick embryo. Injections which resulted in labeling large numbers of motor and sensory axons, separately or in combination, were used to define the time course of innervation and to visualize the progressive morphogenesis of the peripheral nerve pattern. Motor axons emerged from the spinal cord and accumulated near the ventromedial border of the myotome where they remained for up to 16 hours before growing into the plexus region and limb bud. Despite the known later time of sensory neuron production, the first sensory axons projected to the wing at the same time as motor axons. When axons first entered the wing bud, they were distributed in two loosely organized sheets of axon fascicles, one projecting to dorsal muscle mass, the other to ventral muscle mass. The width of the sheets was between one-third to one-half the width of the wing bud, and this distance was more than twice the diameter of the proximal nerve trunks measured at stage 28. In the proximal limb the basic pattern of peripheral nerves emerged gradually from stages 26 to 28. During these stages, the loosely organized sheets of axonal fascicles seen at younger stages were progressively transformed into several coherent nerve trunks and muscle nerves extended from common nerve trunks. The implication of these observations is that many outgrowing axons appear not to follow preformed pathways corresponding to the mature peripheral nerve branching pattern. This pattern may instead result from axonal recognition of cues within a largely undifferentiated limb bud, and from the subsequent bundling together of loosely organized axon fascicles. These events occur concurrently with limb growth and differentiation.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app