Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of an esophageal Doppler probe for the identification of experimental pseudo-electromechanical dissociation: a preliminary study.

Resuscitation 1995 April
STUDY OBJECTIVE: To determine the effectiveness of an esophageal doppler device to non-invasively detect experimental pseudo-electromechanical dissociation (pseudo-EMD).

DESIGN: Prospective, controlled, laboratory investigation using an asphyxial canine cardiac arrest model and a newly-developed esophageal flat-flow probe doppler unit.

INTERVENTIONS: Mongrel dogs (20) were instrumented for hemodynamic monitoring. The esophageal doppler probe was placed in the distal esophagus of each animal. Electromechanical dissociation (EMD) was induced by clamping the endotracheal tube.

MEASUREMENTS AND MAIN RESULTS: A period of pseudo-EMD was defined as the time where cardiac contractility was present, measured by a micromanometer tipped thoracic aortic catheter, without concurrent femoral pulses by palpation. The pseudo-EMD period could be produced consistently in all 20 animals. The characteristic doppler flow sounds were easily heard using the esophageal device in all animals. The time from endotracheal tube clamping until loss of femoral pulses was 622 +/- 96 s; until loss of radial artery doppler signals was 616 +/- 92 s; until loss of esophageal doppler signals was 728 +/- 88 s; and until loss of aortic fluctuations by thoracic aortic catheter was 728 +/- 82 s. The times to loss of esophageal doppler sounds and loss of aortic fluctuations were not significantly different. However, they were significantly longer than the time to loss of femoral pulses (P < 0.02).

CONCLUSIONS: The canine asphyxial EMD model can be used for short experimental studies of pseudo-EMD. Pseudo-EMD can be consistently and non-invasively detected with this esophageal doppler device. The device is as reliable as a micromanometer tipped aortic arch catheter in detecting pseudo-EMD. The doppler device could potentially be useful in improving recognition of near cardiac arrest in pre-hospital and emergency department settings. Further research on the utility of this device in other models of low-flow states should be performed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app