Age-related differences in regeneration of dystrophic (mdx) and normal muscle in the mouse

C Pastoret, A Sebille
Muscle & Nerve 1995, 18 (10): 1147-54
The mdx mouse, a genetic homologue of human Duchenne muscular dystrophy (DMD), has been attributed with a greater regenerative capacity of its skeletal muscles. Here, we have tested the hypothesis that muscles of mdx mice regenerate better than those of nondystrophic animals. We studied muscle regeneration resulting from a denervation-devascularization injury (DD) of extensor digitorum longus muscle (EDL) at 3 weeks and 2 months in mdx and wild-type (C57BL/10) mice. Histological and morphometrical studies of muscle regeneration were made from 3 to 180 days later. When DD was performed in 3-week-old C57BL/10 mice, the percentages of nonperipheral nuclei in regenerated fibers decreased progressively over 3 months. This decrease did not occur in animals where DDs were performed at 2 months, suggesting that two different populations of muscle precursor cells are mobilized in muscle regeneration in mice at these two ages. Moreover, mdx EDL muscle regenerated similarly to the controls for up to 60 postoperative days, as shown by distribution of mean diameters and percentage of nonperipheral nuclei of muscle fibers. After 60 postoperative days, necrosis/regeneration characteristics of mdx muscles recurred, suggesting that mdx-regenerated muscle fibers remain susceptible to degeneration.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"