Add like
Add dislike
Add to saved papers

Repeat treatment of obese mice with BRL 49653, a new potent insulin sensitizer, enhances insulin action in white adipocytes. Association with increased insulin binding and cell-surface GLUT4 as measured by photoaffinity labeling.

Diabetes 1995 September
(+/-)-5-([4-[2-Methyl-2(pyridylamino)ethoxy]phenyl]methyl) 2,4-thiazolidinedione (BRL 49653) is a new potent antidiabetic agent that improves insulin sensitivity in animal models of NIDDM. In C57BL/6 obese (ob/ob) mice, BRL 49653, included in the diet for 8 days, improved glucose tolerance. The half-maximal effective dose was 3 mumol/kg diet, which is equivalent to approximately 0.1 mg/kg body wt. Improvements in glucose tolerance were accompanied by significant reductions in circulating triacylglycerol, nonesterified fatty acids, and insulin. The insulin receptor number of epididymal white adipocytes prepared from obese mice treated with BRL 49653 (30 mumol/kg diet) for 14 days was increased twofold. The affinity of the receptor for insulin was unchanged. In the absence of added insulin, the rates of glucose transport in adipocytes from untreated and BRL 49653-treated obese mice were similar. Insulin (73 nmol/l) produced only a 1.5-fold increase in glucose transport in adipocytes from control obese mice, whereas after BRL 49653 treatment, insulin stimulated glucose transport 2.8-fold. BRL 49653 did not alter the sensitivity of glucose transport to insulin. The increase in insulin responsiveness was accompanied by a 2.5-fold increase in the total tissue content of the glucose transporter GLUT4. Glucose transport in adipocytes from lean littermates was not altered by BRL 49653. To establish the contribution of changes in glucose transporter trafficking to the BRL 49653-mediated increase in insulin action, the cell-impermeant bis-mannose photolabel 2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-mannos++ +-4-yloxy) -2-[2-3H]-propylamine was used to measure adipocyte cell-surface-associated glucose transporters.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app