Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Developmental biology of the pancreas.

Development 1995 June
The pancreas is an organ containing two distinct populations of cells, the exocrine cells that secrete enzymes into the digestive tract, and the endocrine cells that secrete hormones into the bloodstream. It arises from the endoderm as a dorsal and a ventral bud which fuse together to form the single organ. Mammals, birds, reptiles and amphibians have a pancreas with similar histology and mode of development, while in some fish, the islet cells are segregated as Brockmann bodies. Invertebrates do not have a pancreas, but comparable endocrine cells may be found in the gut or the brain. The early pancreatic bud shows uniform expression of the homeobox gene IPF-1 (also known as IDX-1, STF-1 or PDX), which when mutated to inactivity leads to total absence of the organ. The occurrence of heterotopic pancreas in the embryo, and also the metaplasias that can be displayed by a regenerating pancreas in the adult, both suggest that only a few gene products distinguish the pancreatic cell state from that of the surrounding tissues of duodenum, gall bladder and liver. In the developing pancreatic buds, the endocrine cells start to differentiate before the exocrine cells, and co-expression of different hormones by the same cell is often observed at early stages. Although pancreatic endocrine cells produce many gene products also characteristic of neurons, evidence from in vitro cultures and from quailchick grafts shows that they are of endogenous and not of neural crest origin. Observational studies suggest strongly that both endocrine and exocrine cells arise from the same endodermal rudiment. Development of the pancreas in embryonic life requires a trophic stimulus from the associated mesenchyme. In postnatal life, all cell types in the pancreas continue to grow. Destruction of acinar tissue by duct ligation or ethionine treatment is followed by rapid regeneration. Surgical removal of parts of the pancreas is followed by moderate but incomplete regeneration of both acini and islets. Poisoning with alloxan or streptozotocin can lead to permanent depletion of beta cells. Although the cell kinetics of the pancreas are not understood, it seems likely that there is a continuous slow turnover of cells, fed from a stem cells population in the ducts, and that the controls on the production rate of each cell type are local rather than systemic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app