We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
The role of extracellular polysaccharide substance produced by Staphylococcus epidermidis in miliaria.
Journal of the American Academy of Dermatology 1995 November
BACKGROUND: Previous studies have indicated that cutaneous bacteria, particularly coagulase-negative staphylococci, play a role in the pathogenesis of miliaria. An accumulation of periodic acid-Schiff (PAS)-positive material has been described as blocking the sweat duct in miliaria. Furthermore, a PAS-positive extracellular polysaccharide substance (EPS) has been identified as a product of some strains of Staphylococcus epidermidis.
OBJECTIVE: We evaluated the relative ability of various species of coagulase-negative staphylococci to induce miliaria with particular reference to the potential role of EPS.
METHODS: We inoculated various strains of coagulase-negative staphylococci on the volar forearms of subjects under an occlusive dressing coupled with thermal stimulation. Ability to induce miliaria as well as microbiologic, histologic, and immunostaining features were evaluated.
RESULTS: Miliaria was induced only with strains of S. epidermidis; other species including S. haemolyticus, S. hominis, S. cohnii, S. saprophyticus, and S. simulans were not capable of inducing miliaria. Moreover, only S. epidermidis strains capable of producing EPS were capable of inducing miliaria.
CONCLUSION: Our data indicate that EPS is the PAS-positive material that obstructs the delivery of sweat to the skin surface in miliaria and therefore demonstrate that the EPS produced by S. epidermidis plays a central role in the pathogenesis of miliaria. Furthermore, in a survey of staphylococcal flora isolated from 68 subjects, EPS-producing strains were found to be common.
OBJECTIVE: We evaluated the relative ability of various species of coagulase-negative staphylococci to induce miliaria with particular reference to the potential role of EPS.
METHODS: We inoculated various strains of coagulase-negative staphylococci on the volar forearms of subjects under an occlusive dressing coupled with thermal stimulation. Ability to induce miliaria as well as microbiologic, histologic, and immunostaining features were evaluated.
RESULTS: Miliaria was induced only with strains of S. epidermidis; other species including S. haemolyticus, S. hominis, S. cohnii, S. saprophyticus, and S. simulans were not capable of inducing miliaria. Moreover, only S. epidermidis strains capable of producing EPS were capable of inducing miliaria.
CONCLUSION: Our data indicate that EPS is the PAS-positive material that obstructs the delivery of sweat to the skin surface in miliaria and therefore demonstrate that the EPS produced by S. epidermidis plays a central role in the pathogenesis of miliaria. Furthermore, in a survey of staphylococcal flora isolated from 68 subjects, EPS-producing strains were found to be common.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
ANCA-associated vasculitis - Treatment Standard.Nephrology, Dialysis, Transplantation 2023 November 9
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Common postbariatric surgery emergencies for the acute care surgeon: What you need to know.Journal of Trauma and Acute Care Surgery 2023 December 2
How we approach titrating PEEP in patients with acute hypoxemic failure.Critical Care : the Official Journal of the Critical Care Forum 2023 October 32
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app