Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease.

Biochemistry 1995 October 18
The role that transthyretin (TTR) mutations play in the amyloid disease familial amyloid polyneuropathy (FAP) has been probed by comparing the biophysical properties of several TTR variants as a function of pH. We have previously demonstrated that the partial acid denaturation of TTR is sufficient to effect amyloid fibril formation by self-assembly of a denaturation intermediate which appears to be monomeric. Earlier studies on the most pathogenic FAP variant known, Leu-55-Pro, revealed that this variant is much less stable toward acid denaturation than wild-type TTR, apparently explaining why this variant can form amyloid fibrils under mildly acidic conditions where wild-type TTR remains nonamyloidogenic. The hypothesis that FAP mutations destabilize the TTR tetramer in favor of a monomeric amyloidogenic intermediate under lysosomal (acidic) conditions is further supported by the data described here. We compare the acid stability and amyloidogenicity of the most prevalent FAP variant, Val-30-Met, along with the double mutant, Val-30-Met/Thr-119-Met, which serves to model the effects of these mutations in heterozygous patients where the mutations are in different subunits. In addition, we have characterized the Thr-119-Met TTR variant, which is a common nonpathogenic variant in the Portuguese population, to further investigate the role that this mutation plays in protecting individuals who also carry the Val-30-Met mutation against the classically severe FAP pathology. This biophysical study demonstrates that Val-30-Met TTR is significantly less stable toward acid denaturation and more amyloidogenic than wild-type TTR, which in turn is less stable and more amyloidogenic than Thr-119-Met TTR. Interestingly, the double mutant Val-30-Met/Thr-119-Met is very similar to wild-type TTR in terms of its stability toward acid denaturation and its amyloidogenicity. The data suggest that the Thr-119-Met mutation confers decreased amyloidogenicity by stabilizing tetrameric TTR toward acid denaturation. In addition, fluorescence studies monitoring the acid-mediated denaturation pathways of several TTR variants reveal that the majority exhibit a plateau in the relative fluorescence intensity over the amyloid-forming pH range, i.e., ca. pH 4.3-3.3. This intensity plateau suggests that the amyloidogenic intermediate(s) is (are) being observed over this pH range. The Thr-119-Met variant does not exhibit this plateau presumably because the amyloidogenic intermediate(s) do(es) not build up in concentration in this variant. The intermediate is undoubtedly forming in the Thr-119-Met variant, as it will form amyloid fibrils at high concentrations; however, the intermediate is only present at a low steady-state concentration which makes it difficult to detect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app