We have located links that may give you full text access.
Journal Article
Research Support, Non-U.S. Gov't
Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring.
Journal of Cell Science 1995 March
Exogenous addition of neutralising antibody to transforming growth factor-beta 1,2 to cutaneous wounds in adult rodents reduces scarring. Three isoforms of transforming growth factor-beta (1, 2 and 3) have been identified in mammals. We investigated the isoform/isoforms of TGF-beta responsible for cutaneous scarring by: (i) reducing specific endogenous TGF-beta isoforms by exogenous injection of isoform specific neutralising antibodies; and (ii) increasing the level of specific TGF-beta isoforms by exogenous infiltration into the wound margins. Exogenous addition of neutralising antibody to TGF-beta 1 plus neutralising antibody to TGF-beta 2 reduced the monocyte and macrophage profile, neovascularisation, fibronectin, collagen III and collagen I deposition in the early stages of wound healing compared to control wounds. Treatment with neutralising antibodies to TGF-betas 1 and 2 markedly improved the architecture of the neodermis to resemble that of normal dermis and reduced scarring while the control wounds healed with scar formation. Exogenous addition of neutralising antibody to TGF-beta 1 alone also reduced the monocyte and macrophage profile, fibronectin, collagen III and collagen I deposition compared to control wounds. However, treatment with neutralising antibody to TGF-beta 1 alone only marginally reduced scarring. By contrast, wounds treated with neutralising antibody to TGF-beta 2 alone did not differ from control wounds. Interestingly, exogenous addition of the TGF-beta 3 peptide also reduced the monocyte and macrophage profile, fibronectin, collagen I and collagen III deposition in the early stages of wound healing and markedly improved the architecture of the neodermis and reduced scarring. By contrast, wounds treated with either TGF-beta 1 or with TGF-beta 2 had more extracellular matrix deposition in the early stages of wound healing but did not differ from control wounds in the final quality of scarring. This study clearly demonstrates isoform specific differences in the role of TGF-betas in wound healing and cutaneous scarring. TGF-beta 1 and TGF-beta 2 are implicated in cutaneous scarring. This study also suggests a novel therapeutic use of exogenous recombinant, TGF-beta 3 as an anti-scarring agent.
Full text links
Related Resources
Trending Papers
Light chain deposition disease: pathogenesis, clinical characteristics and treatment strategies.Annals of Hematology 2024 August 28
A General Neurologist's Practical Diagnostic Algorithm for Atypical Parkinsonian Disorders: A Consensus Statement.Neurology. Clinical Practice 2024 December
Recommendation for the practice of total intravenous anesthesia.Journal of Anesthesia 2024 September 1
Current and Clinically Relevant Echocardiographic Parameters to Analyze Left Atrial Function.Journal of Cardiovascular Development and Disease 2024 August 5
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app