JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice.

Journal of Physiology 1994 December 2
1. We examined the activity of single mechanosensitive ion channels in recordings from cell-attached patches on myoblasts, differentiated myotubes and acutely isolated skeletal muscle fibres from wild-type and mdx and dy mutant mice. The experiments were concerned with the role of these channels in the pathophysiology of muscular dystrophy. 2. The predominant form of channel activity recorded with physiological saline in the patch electrode arose from an approximately 25 pS mechanosensitive ion channel. Channel activity was similar in undifferentiated myoblasts isolated from all three strains of mice. By contrast, channel activity in mdx myotubes was approximately 3-4 times greater than in either wild-type or dy myotubes and arose from a novel mode of mechanosensitive gating. 3. Single mechanosensitive channels in acutely isolated flexor digitorum brevis fibres had properties indistinguishable from those of muscle cells grown in tissue culture. The channel open probability in mdx fibres was approximately 2 times greater than the activity recorded from wild-type fibres. The overall level of activity in fibres, however, was roughly an order of magnitude smaller than in myoblasts or myotubes. 4. Histological examination of the flexor digitorum brevis fibres from mdx mice showed no evidence of myonecrosis or regenerating fibres, suggesting that the elevated channel activity in dystrophin-deficient muscle precedes the onset of fibre degeneration. 5. An early step in the dystrophic process of the mdx mouse, which leads to pathophysiological Ca2+ entry, may be an alteration in the mechanisms that regulate mechanosensitive ion channel activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app