Add like
Add dislike
Add to saved papers

Developmental alterations in NMDA receptor-mediated [Ca2+]i elevation in substantia gelatinosa neurons of neonatal rat spinal cord.

Using spinal cord slices prepared from neonatal rats, the intracellular free Ca2+ concentration ([Ca2+]i) in neurons located in the dorsal horn substantia gelatinosa (SG) was measured with microscopic fluorometry by loading fura 2-AM into neurons. Developmental alterations in the elevation of [Ca2+]i elicited by the glutamate analogs, NMDA and AMPA, were investigated from postnatal day (PNDs) 1 to 17. During the 1st week of postnatal life, when neuronal maturation of the SG is known to take place, the NMDA response remained large or even slightly increased. It subsequently showed a gradual decline. This pattern of postnatal changes is consistent with previously reported autoradiographic studies on NMDA-binding sites. The affinity of receptors for NMDA was found to decrease constantly during the period examined. The AMPA response and resting [Ca2+]i showed no significant developmental changes. Neonatal treatment with capsaicin, which has been shown to degenerate fine primary afferent fibers terminating in the SG, delayed the developmental decline in the NMDA-induced [Ca2+]i response. It is suggested that the number and the molecular properties of NMDA receptors expressed in the SG change during early postnatal neuronal maturation. The temporal coincidence between postnatal alteration in NMDA-induced [Ca2+]i elevation and neuronal maturation of the SG may indicate that intracellular Ca2+ regulated by NMDA receptor activation is related to postnatal neuronal maturation. Activation of fine primary afferent fibers may contribute to the observed developmental alterations in the NMDA response of SG neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app