Modulation of pulsatile gonadotropin secretion by testosterone in man

A M Matsumoto, W J Bremner
Journal of Clinical Endocrinology and Metabolism 1984, 58 (4): 609-14
In experimental animals, primary testicular deficiency leads to increased LH pulse frequency. Pulsatile FSH secretion has not been well characterized in any species. To determine the effect of testosterone (T) on the pattern of pulsatile gonadotropin secretion in man, we performed frequent blood-sampling studies in six normal men and six men with primary hypogonadism. All primary hypogonadal men were studied 6-8 weeks after stopping T replacement therapy. Five of the six hypogonadal men were restudied 6-8 weeks after treatment with T enanthate (200 mg, im, every 2 weeks; sampling in this group was 2 weeks after their last T injection). Blood sampling was done at 10-min intervals for 12 h in all subjects, and the pattern of episodic LH and FSH secretion was determined. Normal men had a serum T level of 6.3 +/- 0.3 ng/ml (mean +/- SEM), a LH level of 34 +/- 3 ng/ml, and a LH pulse pattern characterized by low frequency (7.6 +/- 0.7 pulses/12 h) and low amplitude (16 +/- 1 ng/ml). Compared to normal men, primary hypogonadal men had a significantly lower T level (2.9 +/- 0.4 ng/ml) and significantly higher LH pulse frequency (13.0 +/- 1.3 pulses/12 h), amplitude (51 +/- 7 ng/ml), and mean level (222 +/- 26 ng/ml). Reinstitution of T replacement therapy in hypogonadal men resulted in a significant increase in the T level (4.7 +/- 0.5 ng/ml) and significant decreases in LH pulse frequency (7.2 +/- 1.6 pulses/12 h) and amplitude (41 +/- 5 ng/ml) as well as mean LH level (75 +/- 15 ng/ml). FSH levels fluctuated in a distinctly pulsatile pattern in all three groups. Differences in pulsatile FSH secretion between primary hypogonadal men before and during T therapy and normal men paralleled those in pulsatile LH secretion in both frequency and amplitude. These results demonstrate that in man 1) diminished T negative feedback results in high frequency (circhoral), high amplitude LH and FSH pulses; 2) T replacement decreased LH and FSH pulse frequency and amplitude as well as mean levels; and 3) the decreased LH and FSH pulse frequency with T treatment implies that T or a metabolite of T acts on the central nervous system to slow the hypothalamic LHRH pulse generator.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"