COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Wall shear stress distribution in a model human aortic arch: assessment by an electrochemical technique.

Wall shear stress (WSS) distribution in a human aortic arch model is studied using 130 cathode electrodes flush-mounted on the model walls. Flow visualizations are made in a transparent geometry model to identify the regions of fluid mechanical interests, e.g. regions of flow separation, eddy formation and flow stagnancy. The 130 electrodes are strategically positioned in the arch based on information obtained from the flow visualizations. The measured data indicate that the aortic arch may be categorized into eight regions: three along the inner wall of the arch (A,B,C); and five near the outer wall (D,E,F,G,H). (1) The regions of low WSS are distributed along the inner wall of the ascending aorta A; the inner wall of the descending aorta C; and the upstream inner wall of the innominate and the common carotid branchings F. (2) The high WSS regions are distributed along the outer wall of the arch E; and the inner wall in the arch opposite to the left subclavian branching B. (3) In certain regions, high and low WSS may be found next to each other (e.g. G and H) without a definable boundary in between; and (4) as the Reynolds number increases, the areas of low WSS decrease, while the high WSS areas increase with no obvious change in magnitude of the stress along the inner wall of the arch. At the branchings, the WSS distribution is not affected by the Reynolds number within the range of observations. The measured WSS distribution is compared with Rodkiewicz's map of early atherosclerotic lesions in the aortic arch of cholesterol fed rabbits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app