Add like
Add dislike
Add to saved papers

A finite element model of skin deformation. III. The finite element model.

Laryngoscope 1986 April
Skin flap design has traditionally been based on geometric models which ignore the elastic properties of skin and its subcutaneous attachments. This study reviews the theoretical and experimental mechanics of skin and soft tissues (I) and proposes a mathematical model of skin deformation based on the finite element method (III). Finite element technique facilitates the modeling of complex structures by analyzing them as an aggregate of smaller elements. This paper gives the results of an animal model developed to study the deformation and mechanical properties of skin, including its viscoelastic properties (hysteresis, creep, and stress relaxation). A new skin extensometer, constructed with digital stepper motors and controlled with a microcomputer, is described to measure these properties for both skin and its subcutaneous attachments. Deformation grids quantitated from photographs with a digitalizing tablet are presented, and computer software is introduced to standardize and analyze them (II). The mathematical model used to simulate wound closures such as the ellipse and rectangular advancement flap. In addition, a series of mathematical experiments performed to simulate deformation of a strip of skin are described; the relationships between the various elastic constants are investigated; and a comparison of these simulations with actual deformation is presented. Limitations of the model and areas for future investigation are discussed (III).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app