JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phosphocreatine content and intracellular pH of calf muscle measured by phosphorus NMR spectroscopy in occlusive arterial disease of the legs.

Energy metabolism of calf muscle was assessed non-invasively by phosphorus (31P) NMR spectroscopy in eleven patients with symptomatic arterial occlusion and in seven matched controls. Phosphocreatine (PCr) content and pH values decreased during non-ischaemic foot exercise to lower values in severely afflicted patients but in all patients, as a group, they were not significantly decreased compared to controls. In contrast, recovery from ischaemic exercise (arterial occlusion by a tourniquet) demonstrated significant differences between patients and controls. Intracellular pH and PCr recovered more slowly in patients than in controls; PCr recovery proceeded exponentially with a recovery half-time of 203 +/- 74 s in patients compared to 36.7 +/- 5.5 s in controls (P less than 0.02). Phosphocreatine (PCr) recovery after ischaemic exercise correlated significantly with the degree of arterial stenoses as assessed by Doppler ultrasound (r = 0.739, P = 0.019) and by angiography (r = 0.885, P = 0.005), suggesting that the degree of large vessel stenoses limits the postischaemic increase in mitochondrial oxidative phosphorylation. Reactive blood flow after ischaemia failed to correlate with PCr recovery or with the degree of arterial stenoses. Phosphorus (31P) NMR spectroscopy provides, therefore, quantitative parameters of muscle energy metabolism in patients with peripheral arterial occlusions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app