We have located links that may give you full text access.
AB002. DNA methylation-regulated genes contribute to temozolomide (TMZ) resistance by scaffolding paraspeckle proteins.
Chinese Clinical Oncology 2024 August
BACKGROUND: Temozolomide (TMZ) resistance in glioblastoma (GBM) remains a challenge in clinical treatment and the mechanism is largely unknown. Emerging evidence shows that epigenetic modifications including DNA methylation and non-coding RNA were involved in diverse biological processes, including therapeutic resistance. However, the underlying mechanisms by which DNA methylation-mediated non-coding RNA regulates TMZ resistance remain poorly characterized.
METHODS: RNA microarray and DNA methylation chips of TMZ-resistant and parental GBM cells were performed for the gain of unreported long non-coding RNA HSD52. Quantitative reverse transcription polymerase chain reaction (PCR) and fluorescence in situ hybridization assays were used to detect HSD52 levels in GBM cells and tissues. The investigation into HSD52's impact on TMZ resistance was conducted utilizing both in vitro assays and intracranial xenograft mouse models. The mechanism of HSD52 expression and its relationships with paraspeckle proteins, non-POU domain-containing octamer-binding protein (NONO) and splicing factor proline/glutamine rich (SFPQ), as well as alpha-thalassemia mental retardation X-linked (ATRX) mRNA were determined by pyrosequencing assay, chromatin immunoprecipitation, chromatin isolation by RNA purification, RNA immunoprecipitation, RNA pulldown, immunofluorescence, and western blot assays.
RESULTS: HSD52 was highly expressed in high-grade glioma and TMZ-resistant GBM cells. Phosphorylated p38 mitogen-activated protein kinase (p38 MAPK)/ubiquitin specific peptidase 7 (USP7) axis mediates H3 ubiquitination, impairs the interaction between H3K23ub and DNA methyltransferase 1 (DNMT1) and the recruitment of DNMT1 at the HSD52 promoter to attenuate DNA methylation, which makes the transcription factor 12 (TCF12) more accessible to the promoter region to regulate HSD52 expression. Further analysis showed that HSD52 can serve as a scaffold to promote the interaction between NONO and SFPQ, and then increase the paraspeckle assembly and activate the paraspeckle/ataxia telangiectasia mutated (ATM) kinase pathway in GBM cells. In addition, HSD52 forms an RNA-RNA duplex with ATRX mRNA, and facilitates the association of heteromer of SFPQ and NONO with RNA duplex, thus leading to the increase of ATRX mRNA stability and level. In clinical patients, HSD52 is required for TMZ resistance and GBM recurrence.
CONCLUSIONS: Our results reveal that HSD52 in GBM could serve as a therapeutic target to overcome TMZ resistance, enhancing the clinical benefits of TMZ chemotherapy.
METHODS: RNA microarray and DNA methylation chips of TMZ-resistant and parental GBM cells were performed for the gain of unreported long non-coding RNA HSD52. Quantitative reverse transcription polymerase chain reaction (PCR) and fluorescence in situ hybridization assays were used to detect HSD52 levels in GBM cells and tissues. The investigation into HSD52's impact on TMZ resistance was conducted utilizing both in vitro assays and intracranial xenograft mouse models. The mechanism of HSD52 expression and its relationships with paraspeckle proteins, non-POU domain-containing octamer-binding protein (NONO) and splicing factor proline/glutamine rich (SFPQ), as well as alpha-thalassemia mental retardation X-linked (ATRX) mRNA were determined by pyrosequencing assay, chromatin immunoprecipitation, chromatin isolation by RNA purification, RNA immunoprecipitation, RNA pulldown, immunofluorescence, and western blot assays.
RESULTS: HSD52 was highly expressed in high-grade glioma and TMZ-resistant GBM cells. Phosphorylated p38 mitogen-activated protein kinase (p38 MAPK)/ubiquitin specific peptidase 7 (USP7) axis mediates H3 ubiquitination, impairs the interaction between H3K23ub and DNA methyltransferase 1 (DNMT1) and the recruitment of DNMT1 at the HSD52 promoter to attenuate DNA methylation, which makes the transcription factor 12 (TCF12) more accessible to the promoter region to regulate HSD52 expression. Further analysis showed that HSD52 can serve as a scaffold to promote the interaction between NONO and SFPQ, and then increase the paraspeckle assembly and activate the paraspeckle/ataxia telangiectasia mutated (ATM) kinase pathway in GBM cells. In addition, HSD52 forms an RNA-RNA duplex with ATRX mRNA, and facilitates the association of heteromer of SFPQ and NONO with RNA duplex, thus leading to the increase of ATRX mRNA stability and level. In clinical patients, HSD52 is required for TMZ resistance and GBM recurrence.
CONCLUSIONS: Our results reveal that HSD52 in GBM could serve as a therapeutic target to overcome TMZ resistance, enhancing the clinical benefits of TMZ chemotherapy.
Full text links
Related Resources
Trending Papers
Looking for the ideal medication for heart failure with reduced ejection fraction: a narrative review.Frontiers in Cardiovascular Medicine 2024
2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2024 September 24
Biomarkers in acute kidney injury.Annals of Intensive Care 2024 September 15
Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth.Diabetes Care 2024 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app