Add like
Add dislike
Add to saved papers

Cationic Amphiphilic Comb-Shaped Polymer Emulsifier for Fabricating Avermectin Nanoemulsion with Exceptional Leaf Behaviors and Multidimensional Controlled Release.

The development of intelligent multifunctional nanopesticides featuring enhanced foliage affinity and hierarchical target release is increasingly pivotal in modern agriculture. In this study, a novel cationic amphiphilic comb-shaped polymer, termed PEI-TA, was prepared via a one-step Michael addition between low-molecular-weight biodegradable polyethylenimine (PEI) and tetradecyl acrylate (TA), followed by neutralization with acetic acid. Using the emulsifier PEI-TA, a positively charged avermectin (AVM) nanoemulsion was prepared via a phase inversion emulsification process. Under optimal formulation, the obtained AVM nanoemulsion (defined as AVM@PEI-TA) demonstrated exceptional properties, including small size (as low as 67.6 nm), high encapsulation efficiency (up to 87.96%), and high stability toward shearing, storage, dilution, and UV irradiation. The emulsifier endowed AVM@PEI-TA with a pronounced thixotropy, so that the droplets exhibited no splash and bounce when they were sprayed on the cabbage leaf. Owing to the electrostatic attraction between the emulsifier and the leaf, AVM@PEI-TA showed improved leaf adhesion, better deposition, and higher washing resistance in contrast to both its negatively charged counterpart and AVM emulsifiable concentrate (AVM-EC). Compared to the large-sized particles, the small-sized particles of the AVM nanoemulsion more effectively traveled long distances through the vascular system of veins after entering the leaf apoplast. Moreover, the nanoparticles lost stability when exposed to multidimensional stimuli, including pH, temperature, esterase, and ursolic acid individually or simultaneously, thereby promoting the release of AVM. The release mechanisms were discussed for understanding the important role of the emulsifier in nanopesticides.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app