We have located links that may give you full text access.
Predicting prognosis for epithelial ovarian cancer patients receiving bevacizumab treatment with CT-based deep learning.
NPJ Precision Oncology 2024 September 13
Epithelial ovarian cancer (EOC) presents considerable difficulties in prognostication and treatment strategy development. Bevacizumab, an anti-angiogenic medication, has demonstrated potential in enhancing progression-free survival (PFS) in EOC patients. Nevertheless, the identification of individuals at elevated risk of disease progression following treatment remains a challenging task. This study was to develop and validate a deep learning (DL) model using retrospectively collected computed tomography (CT) plain scans of inoperable and recurrent EOC patients receiving bevacizumab treatment diagnosed between January 2013 and January 2024. A total of 525 patients from three different institutions were retrospectively included in the study and divided into training set (N = 400), internal test set (N = 97) and external test set (N = 28). The model's performance was evaluated using Harrell's C-index. Patients were categorized into high-risk and low-risk group based on a predetermined cutoff in the training set. Additionally, a multimodal model was evaluated, incorporating the risk score generated by the DL model and the pretreatment level of carbohydrate antigen 125 as input variables. The Net Reclassification Improvement (NRI) metric quantified the reclassification performance of our optimal model in comparison to the International Federation of Gynecology and Obstetrics (FIGO) staging model. The results indicated that DL model achieved a PFS predictive C-index of 0.73 in the internal test set and a C-index of 0.61 in the external test set, along with hazard ratios of 34.24 in the training set (95% CI: 21.7, 54.1; P < 0.001) and 8.16 in the internal test set (95% CI: 2.5, 26.8; P < 0.001). The multimodal model demonstrated a C-index of 0.76 in the internal test set and a C-index of 0.64 in the external test set. Comparative analysis against FIGO staging revealed an NRI of 0.06 (P < 0.001) for the multimodal model. The model presents opportunities for prognostic assessment, treatment strategizing, and ongoing patient monitoring.
Full text links
Related Resources
Trending Papers
Looking for the ideal medication for heart failure with reduced ejection fraction: a narrative review.Frontiers in Cardiovascular Medicine 2024
2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2024 September 24
Biomarkers in acute kidney injury.Annals of Intensive Care 2024 September 15
Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth.Diabetes Care 2024 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app