We have located links that may give you full text access.
pH-sensing GPR68 inhibits vascular smooth muscle cell proliferation through Rap1A.
American Journal of Physiology. Heart and Circulatory Physiology 2024 September 13
Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell cycle progression and proliferation compared to WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared to WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathologic phenotypic switching and proliferation in VSM.
Full text links
Related Resources
Trending Papers
How to perform Point of Care Ultrasound at resuscitation and when it is useful.Medical Ultrasonography 2024 September 30
Catastrophic Antiphospholipid Syndrome: A Review of Current Evidence and Future Management Practices.Curēus 2024 September
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app