We have located links that may give you full text access.
Identification of zinc finger MIZ-type containing 2 as an oncoprotein enhancing NAD-dependent protein deacetylase sirtuin-1 deacetylase activity to regulate Wnt and Hippo pathways in non-small-cell lung cancer.
Cellular & Molecular Biology Letters 2024 September 12
BACKGROUND: Zinc finger MIZ-type containing 2 (ZMIZ2) can function as a coactivator and participate in the progression of certain malignant tumors; however, its expression and underlying molecular mechanism in non-small-cell lung cancer (NSCLC) remains unknown. In this study, we aim to analyze the expression of ZMIZ2 and its tumorigenic function in NSCLC, identifying its related factors.
METHODS: ZMIZ2 expression in NSCLC tissue samples and cell lines was examined using immunohistochemistry and western blotting; its biological role was investigated using in vivo and in vitro assays. The association between ZMIZ2 and NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was demonstrated using mass spectrometry and immunoprecipitation experiments. Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG)-based enrichment analysis, luciferase reporter assay, and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to verify the impact of ZMIZ2-SIRT1 combination on Hippo/Wnt pathways.
RESULTS: ZMIZ2 was highly expressed in NSCLC and positively associated with advanced pTNM staging, lymph node metastasis, and poor overall survival. Functional experiments revealed that ZMIZ2 promotes the proliferation, migration, and invasiveness of lung cancer cells-establishing its role as a promoter of oncogenes. Molecular mechanism studies identified SIRT1 as an assisted key factor interacting with ZMIZ2. KEGG enrichment analysis revealed that ZMIZ2 is closely related to Wnt/Hippo pathways; ZMIZ2-SIRT1 interaction enhanced SIRT1 deacetylase activity. Direct downregulation of intranuclear β-catenin and yes-associated protein (YAP) acetylation levels occurred independently of upstream proteins in Wnt/Hippo pathways; transcriptional activities of β-catenin-transcription factor 4 (TCF4) and YAP-TEA domain family transcription factors (TEADs) were amplified.
CONCLUSIONS: ZMIZ2 promotes the malignant phenotype of lung cancer by regulating Wnt/Hippo pathways through SIRT1, providing an experimental basis for discovering novel biomarkers and developing tumor-targeted drugs.
METHODS: ZMIZ2 expression in NSCLC tissue samples and cell lines was examined using immunohistochemistry and western blotting; its biological role was investigated using in vivo and in vitro assays. The association between ZMIZ2 and NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was demonstrated using mass spectrometry and immunoprecipitation experiments. Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG)-based enrichment analysis, luciferase reporter assay, and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to verify the impact of ZMIZ2-SIRT1 combination on Hippo/Wnt pathways.
RESULTS: ZMIZ2 was highly expressed in NSCLC and positively associated with advanced pTNM staging, lymph node metastasis, and poor overall survival. Functional experiments revealed that ZMIZ2 promotes the proliferation, migration, and invasiveness of lung cancer cells-establishing its role as a promoter of oncogenes. Molecular mechanism studies identified SIRT1 as an assisted key factor interacting with ZMIZ2. KEGG enrichment analysis revealed that ZMIZ2 is closely related to Wnt/Hippo pathways; ZMIZ2-SIRT1 interaction enhanced SIRT1 deacetylase activity. Direct downregulation of intranuclear β-catenin and yes-associated protein (YAP) acetylation levels occurred independently of upstream proteins in Wnt/Hippo pathways; transcriptional activities of β-catenin-transcription factor 4 (TCF4) and YAP-TEA domain family transcription factors (TEADs) were amplified.
CONCLUSIONS: ZMIZ2 promotes the malignant phenotype of lung cancer by regulating Wnt/Hippo pathways through SIRT1, providing an experimental basis for discovering novel biomarkers and developing tumor-targeted drugs.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app