Journal Article
Review
Add like
Add dislike
Add to saved papers

Unlocking Hidden Risks: Harnessing Artificial Intelligence (AI) to Detect Subclinical Conditions from an Electrocardiogram (ECG).

Recent artificial intelligence (AI) advancements in cardiovascular medicine offer potential enhancements in diagnosis, prediction, treatment, and outcomes. This article aims to provide a basic understanding of AI enabled ECG technology. Specific conditions and findings will be discussed, followed by reviewing associated terminology and methodology. In the appendix, definitions of AUC versus accuracy are explained. The application of deep learning models enables detecting diseases from normal electrocardiograms at accuracy not previously achieved by technology or human experts. Results with AI enabled ECG are encouraging as they considerably exceeded current screening models for specific conditions (i.e., atrial fibrillation, left ventricular dysfunction, aortic stenosis, and hypertrophic cardiomyopathy). This could potentially lead to a revitalization of the utilization of the ECG in the insurance domain. While we are embracing the findings with this rapidly evolving technology, but cautious optimism is still necessary at this point.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app