We have located links that may give you full text access.
Dynamic Pathology of Enteric Neural Network using Curcumin-assisted Multiphoton Laser Imaging in Hirschsprung Disease.
Annals of Surgery 2024 September 12
OBJECTIVE: In living tissue, it has been difficult to make microscopic-level observations without damaging the tissue.
SUMMARY BACKGROUND DATA: We have invented a novel intravital fluorescent observation method (IFOM) for real-time tissue observation, combining multi-photon laser scanning microscopy (MPLSM) with curcumin vital staining (CVS-IFOM). The aim of this study was to use CVS-IFOM to analyze the enteric nervous system (ENS) in mice and human patients with hypoganglionosis and Hirschsprung disease.
METHODS: In an initial viability study, we compared live ENS images from non-fluorescent C57BL6 mice stained with curcumin (n=5) and GFP mice (n=5) using MPLSM. We then explored CVS-IFOM for the live examination of resected colon tissues from one hypoganglionosis and three Hirschsprung disease patients.
RESULTS: In the viability study, detailed ENS histological features were only observed in the curcumin-stained mice. In the hypoganglionosis patient, CVS-IFOM provided ENS details that were not visualized under H&E staining or calretinin immunohistochemistry, allowing the analysis of ENS size, neural bundle number, and neural cell number per plexus. In Hirschsprung disease patients, CVS-IFOM showed a gradual hypoplastic change in the ENS from the oral wedge to the anal wedge, detecting disproportionate changes in the ENS within the same intestinal level, supporting a circumferentially uneven distribution of the intestinal ENS.
CONCLUSION: CVS-IFOM may be supportive for intraoperative pathological diagnosis during surgeries in Hirschsprung disease.
SUMMARY BACKGROUND DATA: We have invented a novel intravital fluorescent observation method (IFOM) for real-time tissue observation, combining multi-photon laser scanning microscopy (MPLSM) with curcumin vital staining (CVS-IFOM). The aim of this study was to use CVS-IFOM to analyze the enteric nervous system (ENS) in mice and human patients with hypoganglionosis and Hirschsprung disease.
METHODS: In an initial viability study, we compared live ENS images from non-fluorescent C57BL6 mice stained with curcumin (n=5) and GFP mice (n=5) using MPLSM. We then explored CVS-IFOM for the live examination of resected colon tissues from one hypoganglionosis and three Hirschsprung disease patients.
RESULTS: In the viability study, detailed ENS histological features were only observed in the curcumin-stained mice. In the hypoganglionosis patient, CVS-IFOM provided ENS details that were not visualized under H&E staining or calretinin immunohistochemistry, allowing the analysis of ENS size, neural bundle number, and neural cell number per plexus. In Hirschsprung disease patients, CVS-IFOM showed a gradual hypoplastic change in the ENS from the oral wedge to the anal wedge, detecting disproportionate changes in the ENS within the same intestinal level, supporting a circumferentially uneven distribution of the intestinal ENS.
CONCLUSION: CVS-IFOM may be supportive for intraoperative pathological diagnosis during surgeries in Hirschsprung disease.
Full text links
Related Resources
Trending Papers
Central Nervous System Involvement in Systemic Autoimmune Rheumatic Diseases-Diagnosis and Treatment.Pharmaceuticals 2024 August 7
Sedation for awake tracheal intubation: A systematic review and network meta-analysis.Anaesthesia 2024 October 28
Efficacy of Traditional Anti-lipidemic Drugs in Lowering Lipoprotein(a) Levels: A Systematic Review.Curēus 2024 September
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app