We have located links that may give you full text access.
Performance of explainable artificial intelligence in guiding the management of patients with a pancreatic cyst.
Pancreatology : Official Journal of the International Association of Pancreatology (IAP) ... [et Al.] 2024 September 2
BACKGROUND/OBJECTIVES: Pancreatic cyst management can be distilled into three separate pathways - discharge, monitoring or surgery- based on the risk of malignant transformation. This study compares the performance of artificial intelligence (AI) models to clinical care for this task.
METHODS: Two explainable boosting machine (EBM) models were developed and evaluated using clinical features only, or clinical features and cyst fluid molecular markers (CFMM) using a publicly available dataset, consisting of 850 cases (median age 64; 65 % female) with independent training (429 cases) and holdout test cohorts (421 cases). There were 137 cysts with no malignant potential, 114 malignant cysts, and 599 IPMNs and MCNs.
RESULTS: The EBM and EBM with CFMM models had higher accuracy for identifying patients requiring monitoring (0.88 and 0.82) and surgery (0.66 and 0.82) respectively compared with current clinical care (0.62 and 0.58). For discharge, the EBM with CFMM model had a higher accuracy (0.91) than either the EBM model (0.84) or current clinical care (0.86). In the cohort of patients who underwent surgical resection, use of the EBM-CFMM model would have decreased the number of unnecessary surgeries by 59 % (n = 92), increased correct surgeries by 7.5 % (n = 11), identified patients who require monitoring by 122 % (n = 76), and increased the number of patients correctly classified for discharge by 138 % (n = 18) compared to clinical care.
CONCLUSIONS: EBM models had greater sensitivity and specificity for identifying the correct management compared with either clinical management or previous AI models. The model predictions are demonstrated to be interpretable by clinicians.
METHODS: Two explainable boosting machine (EBM) models were developed and evaluated using clinical features only, or clinical features and cyst fluid molecular markers (CFMM) using a publicly available dataset, consisting of 850 cases (median age 64; 65 % female) with independent training (429 cases) and holdout test cohorts (421 cases). There were 137 cysts with no malignant potential, 114 malignant cysts, and 599 IPMNs and MCNs.
RESULTS: The EBM and EBM with CFMM models had higher accuracy for identifying patients requiring monitoring (0.88 and 0.82) and surgery (0.66 and 0.82) respectively compared with current clinical care (0.62 and 0.58). For discharge, the EBM with CFMM model had a higher accuracy (0.91) than either the EBM model (0.84) or current clinical care (0.86). In the cohort of patients who underwent surgical resection, use of the EBM-CFMM model would have decreased the number of unnecessary surgeries by 59 % (n = 92), increased correct surgeries by 7.5 % (n = 11), identified patients who require monitoring by 122 % (n = 76), and increased the number of patients correctly classified for discharge by 138 % (n = 18) compared to clinical care.
CONCLUSIONS: EBM models had greater sensitivity and specificity for identifying the correct management compared with either clinical management or previous AI models. The model predictions are demonstrated to be interpretable by clinicians.
Full text links
Related Resources
Trending Papers
2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2024 September 24
Biomarkers in acute kidney injury.Annals of Intensive Care 2024 September 15
Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth.Diabetes Care 2024 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app