Add like
Add dislike
Add to saved papers

Targeting iRhom2/ADAM17 attenuates COVID-19-induced cytokine release from cultured lung epithelial cells.

The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global health challenge, with acute respiratory distress syndrome (ARDS) being a major cause of mortality. Excessive cytokine release (cytokine storm) has been causally related to COVID-19-associated ARDS. While TNF-α inhibitors have shown potential in reducing inflammation, their broad effects on TNF-α signaling, including both pro- and anti-inflammatory pathways, present significant challenges and side effects in clinical use. Therefore, more precise therapeutic targets are urgently needed. ADAM17 is a key enzyme driving cytokine release, but its broad presence complicates direct inhibition. Targeting iRhom2, a regulator specific to immune cells that controls ADAM17's activity, offers a more focused and effective approach to reducing cytokine release. In this study, we hypothesized that targeted inhibition of ADAM-17/iRhom2 attenuates COVID-19-induced cytokine release in cultured lung epithelial cells. Human primary bronchial/tracheal epithelial cells challenged with COVID-19 pseudo-viral particles resulted in elevated cytokine release, which was attenuated following siRNA-mediated silencing of ADAM17 and iRhom2. Targeting ADAM-17/iRhom2 pathway may thus represent a strategy to overcome the COVID-19-associated ARDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app