We have located links that may give you full text access.
Mouse testicular macrophages can independently produce testosterone and are regulated by Cebpb.
Biological Research 2024 September 9
BACKGROUND: Testicular macrophages (TM) have long been recognized for their role in immune response within the testicular environment. However, their involvement in steroid hormone synthesis, particularly testosterone, has not been fully elucidated. This study aims to explore the capability of TM to synthesize and secrete testosterone de novo and to investigate the regulatory mechanisms involved.
RESULTS: Transcriptomic analysis revealed significant expression of Cyp11a1, Cyp17a1, Hsd3b1, and Hsd17b3 in TM, which are key enzymes in the testosterone synthesis pathway. qPCR analysis and immunofluorescence validation confirmed the autonomous capability of TM to synthesize testosterone. Ablation of TM in mice resulted in decreased physiological testosterone levels, underscoring the significance of TM in maintaining testicular testosterone levels. Additionally, the study also demonstrated that Cebpb regulates the expression of these crucial genes, thereby modulating testosterone synthesis.
CONCLUSIONS: This research establishes that TM possess the autonomous capacity to synthesize and secrete testosterone, contributing significantly to testicular testosterone levels. The transcription factor Cebpb plays a crucial role in this process by regulating the expression of key genes involved in testosterone synthesis.
RESULTS: Transcriptomic analysis revealed significant expression of Cyp11a1, Cyp17a1, Hsd3b1, and Hsd17b3 in TM, which are key enzymes in the testosterone synthesis pathway. qPCR analysis and immunofluorescence validation confirmed the autonomous capability of TM to synthesize testosterone. Ablation of TM in mice resulted in decreased physiological testosterone levels, underscoring the significance of TM in maintaining testicular testosterone levels. Additionally, the study also demonstrated that Cebpb regulates the expression of these crucial genes, thereby modulating testosterone synthesis.
CONCLUSIONS: This research establishes that TM possess the autonomous capacity to synthesize and secrete testosterone, contributing significantly to testicular testosterone levels. The transcription factor Cebpb plays a crucial role in this process by regulating the expression of key genes involved in testosterone synthesis.
Full text links
Related Resources
Trending Papers
Novel Insights into Diabetic Kidney Disease.International Journal of Molecular Sciences 2024 September 23
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app