Add like
Add dislike
Add to saved papers

Muscle microvascular oxygen delivery limitations during the contraction phase of intermittent maximal effort contractions.

PURPOSE: The end-test torque (ETT) during intermittent maximal effort contractions reflects the highest contraction intensity at which a muscle metabolic steady-state can be attained. This study determined if ETT is the highest intensity at which the contraction phase of intermittent exercise does not limit the matching of microvascular oxygen delivery to muscle oxygen demand.

METHODS: Microvascular oxygenation characteristics of the biceps brachii muscle were measured in sixteen young, healthy individuals (8M/8F, 22 ± 3 years, 80.9 ± 20.3 kg) by near-infrared spectroscopy during maximal effort elbow flexion under control conditions (CON) and with complete circulatory occlusion (OCC).

RESULTS: Increases in total-[heme] were blunted during OCC compared to CON (225 ± 87 vs. 264 ± 88 μM, p < 0.001) but OCC did not elicit a compensatory increase in deoxygenated-[heme] at any timepoint (108 ± 62 vs. 101 ± 61 μM, p > 0.05). Deoxygenated-[heme] was significantly elevated during contraction, relative to relaxation, above ETT (107 ± 60 vs. 98.8 ± 60.5 μM, p < 0.001), but not at ETT (91.7 ± 54.1 vs. 98.4 ± 62.2 μM, p = 0.174). Total-[heme] was significantly reduced during contraction, relative to relaxation, at all contraction intensities during CON (p < 0.05) and OCC (p < 0.05).

CONCLUSION: These data suggest that ETT may reflect the highest contraction intensity at which contraction-induced increases in intramuscular pressures do not limit muscle perfusion to a degree that requires further increases in fractional oxygen extraction (i.e., deoxygenated-[heme]) despite limited microvascular diffusive conductance (i.e., total-[heme]).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app