Add like
Add dislike
Add to saved papers

An AI-based imaging flow cytometry approach to study erythrophagocytosis.

Erythrophagocytosis is a process consisting of recognition, engulfment and digestion by phagocytes of antibody-coated or damaged erythrocytes. Understanding the dynamics that are behind erythrophagocytosis is fundamental to comprehend this cellular process under specific circumstances. Several techniques have been used to study phagocytosis. Among these, an interesting approach is the use of Imaging Flow Cytometry (IFC) to distinguish internalization and binding of cells or particles. However, this method requires laborious analysis. Here, we introduce a novel approach to analyze the phagocytosis process by combining Artificial Intelligence (AI) with IFC. Our study demonstrates that this approach is highly suitable to study erythrophagocytosis, categorizing internalized, bound and non-bound erythrocytes. Validation experiments showed that our pipeline performs with high accuracy and reproducibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app