Add like
Add dislike
Add to saved papers

Trimetallic-doped carbon nitride achieves chondroitin sulfate degradation via a free radical degradation strategy.

Carbohydrate Polymers 2024 December 15
Traditional Fenton principles for degrading polysaccharides, including chondroitin sulfate (CS), are fraught with limitations, such as strict pH-dependence, higher temperature requirements, desulfurization, and environmentally perilous. In this study, an effective Fenton-like system comprising trimetallic-doped carbon nitride material (tri-CN) with hydrogen-bonded melamine-cyanuric acid (MCA) supramolecular aggregates as its basic skeleton was engineered to overcome the challenges of traditional methods. Detailed material characterizations revealed that, compared to monometallic-doped or bimetallic-doped counterparts, tri-CN offered a larger surface area, higher porosity, and increased metal loading, thereby enhancing reactant accessibility and polysaccharide degradation efficiency. The characterization and activity assessment of the degraded polysaccharide revealed structurally intact products without significant desulfurization, indicating the effectiveness of the designed approach. Moreover, the degraded chondroitin sulfate CS3 catalyzed by tri-CN, exhibited promising antioxidant activity and anti-CRISPR potential. The results elucidated that the high-valent iron species in the material served as primary active sites, catalyzing the cleavage of hydrogen peroxide to generate hydroxyl radicals that subsequently attacked CS chains, leading to their fragmentation. Hence, the designed material can be efficiently applied to polysaccharide degradation, but not limited to photocatalysis, electrocatalysis, sensor, energy storage materials, and wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app