Add like
Add dislike
Add to saved papers

Metal-ion-binding properties of glycyrrhiza polysaccharide extracted from Licorice: Structural characterization and potential application in drug delivery.

Carbohydrate Polymers 2024 December 15
Licorice is not only a widely used food, but also a classic tonic Chinese medicine, which mainly contains glycyrrhiza polysaccharides (GP) and flavonoids with excellent anti-inflammatory and antioxidant pharmacological activities. In this study, a neutral homogeneous polysaccharide (GP1-2) was isolated from Glycyrrhiza uralensis Fisch. However, its gelation behavior and properties have yet to be comprehensively studied. In this study, a Ca2+ cross-linked physical hydrogel based on neutral GP1-2 (GP1-2-Ca2+ ) is fabricated. The ability of metal ions to cross-linked gelation with GP1-2 is explored with respect to the polysaccharide concentrations, ion species, and pH environments. The pH range of Ca2+ cross-linked with GP1-2 to form hydrogel is 8 to 10, and the gelation concentration ranges from 20.0 % to 50.0 % w/v. Subsequently, the properties of the GP1-2-Ca2+ hydrogels are investigated using rheological measurements, scanning electron microscopy, free radical scavenging, MTT assays, healing capability, and enzyme-linked immunosorbent assays. The results reveal that the structure of GP1-2 presents an irregular porous structure, however, the physical gel formed after cross-linking with Ca2+ microscopically showed a globular porous structure with uniform distribution, suggesting that this structure characteristic may be used as a carrier material for drug delivery. Meanwhile, the GP1-2-Ca2+ hydrogel also possessed extraordinary viscoelasticity, cytocompatibility, antioxidant properties, anti-inflammatory activity, and ability to promote wound healing. Furthermore, the potential of GP1-2-Ca2+ hydrogels as drug delivery materials was validated by using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behavior of GP1-2-Ca2+ is pH-dependent. All in all, this study reveals the potential application of natural polysaccharides in drug delivery, highlighting its dual roles as carrier materials and bioactive ingredients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app