Add like
Add dislike
Add to saved papers

Combination of Deferoxamine With Cyclosporine Synergistically Blunt Renal Cold Ischemia-Reperfusion Injury in Rat Transplantation Model.

OBJECTIVES: Ferroptosis plays a pivotal role in the pathogenesis of renal ischemia-reperfusion injury, where the processes are mediated by free ferrous ions and mitochondrial-released reactive oxygen species. However, the administration of high doses of cyclosporine A (CsA) or deferoxamine (DFO) poses a significant risk of renotoxicity. In contrast, low doses of DFO act as a ferrous iron chelator, and CsA functions as a mitochondrial reactive oxygen species blocker. This study aims to explore the potential protective effects of donor treatment with low-dose CsA, DFO, or their combination against ischemia-reperfusion injury during renal transplantation in a rat model.

MATERIALS AND METHODS: In an ex vivo cold storage (CS) model utilizing renal slices, the impact of incorporating DFO, CsA, and a combination of both into the University of Wisconsin solution was assessed through the measurement of lactate dehydrogenase leakage. Additionally, their potential benefits were investigated in a rat donation after circulatory death (DCD) kidney transplant model, where the extent of damage was evaluated based on graft function, tubular necrosis, and inflammation.

RESULTS: The co-administration of DFO and CsA effectively decreased the release of lactate dehydrogenase induced by CS ( P ≥ .05). In the in vivo model, this combined supplementation demonstrated a mitigating effect on reperfusion injury, evidenced by lower blood urea nitrogen levels and acute tubular necrosis scores compared to the control group (allP ≤ .05). Furthermore, the combined treatment significantly reduced apoptotic levels compared to the control group (P ≥ .05).

CONCLUSIONS: The combined treatment with DFO and CsA mitigated the cold ischemia-reperfusion injury in the DCD kidney. Hence, this presents a new strategy for the CS of DCD kidney in clinical transplants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app