Add like
Add dislike
Add to saved papers

Privacy-preserving biological age prediction over federated human methylation data using fully homomorphic encryption.

Genome Research 2024 September 5
DNA methylation data plays a crucial role in estimating chronological age in mammals, offering real-time insights into an individual's aging process. The Epigenetic Pacemaker (EPM) model allows inference of the biological age as deviations from the population trend. Given the sensitivity of this data, it is essential to safeguard both inputs and outputs of the EPM model. In a recent study, a privacy-preserving approach for EPM computation was introduced, utilizing Fully Homomorphic Encryption (FHE). However, their method had limitations, including having high communication complexity and being impractical for large datasets Our work presents a new privacy preserving protocol for EPM computation, analytically improving both privacy and complexity. Notably, we employ a single server for the secure computation phase while ensuring privacy even in the event of server corruption (compared to requiring two non-colluding servers. Using techniques from symbolic algebra and number theory, the new protocol eliminates the need for communication during secure computation, significantly improves asymptotic runtime and and offers better compatibility to parallel computing for further time complexity reduction. We have implemented our protocol, demonstrating its ability to produce results similar to the standard (insecure) EPM model with substantial performance improvement compared to previous methods. These findings hold promise for enhancing data security in medical applications where personal privacy is paramount. The generality of both the new approach and the EPM, suggests that this protocol may be useful to other uses employing similar expectation maximization techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app