We have located links that may give you full text access.
Energy-Saving Mechanism of Wastewater Treatment Process Adaptation on Natural Temperature Variation: The Case from Coking Wastewater.
Environmental Science & Technology 2024 September 5
The cyclical variations in environmental temperature generated by natural rhythms constantly impact the wastewater treatment process through the aeration system. Engineering data show that fluctuations in environmental temperature cause the reactor temperature to drop at night, resulting in increased dissolved oxygen concentration and improved effluent wastewater quality. However, the impact of natural temperature variation on wastewater treatment systems and the energy-saving potential has yet to be fully recognized. Here, we conducted a comprehensive study, using a full-scale oxic-hydrolytic and denitrification-oxic (OHO) coking wastewater treatment process as a case and developed a dynamic aeration model integrating thermodynamics and kinetics to elucidate the energy-saving mechanisms of wastewater treatment systems in response to diurnal temperature variations. Our case study results indicate that natural diurnal temperature variations can cut the energy consumption of 660,980 kWh annually (up to 30%) for the aeration unit in the OHO system. Wastewater treatment facilities located in regions with significant environmental temperature variation stand to benefit more from this energy-saving mechanism. Methods such as flow dynamic control, load shifting, and process unit editing can be fitted into the new or retrofitted wastewater treatment engineering.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app