We have located links that may give you full text access.
Privacy Risk Assessment for Synthetic Longitudinal Health Data.
Studies in Health Technology and Informatics 2024 August 30
INTRODUCTION: A modern approach to ensuring privacy when sharing datasets is the use of synthetic data generation methods, which often claim to outperform classic anonymization techniques in the trade-off between data utility and privacy. Recently, it was demonstrated that various deep learning-based approaches are able to generate useful synthesized datasets, often based on domain-specific analyses. However, evaluating the privacy implications of releasing synthetic data remains a challenging problem, especially when the goal is to conform with data protection guidelines.
METHODS: Therefore, the recent privacy risk quantification framework Anonymeter has been built for evaluating multiple possible vulnerabilities, which are specifically based on privacy risks that are considered by the European Data Protection Board, i.e. singling out, linkability, and attribute inference. This framework was applied to a synthetic data generation study from the epidemiological domain, where the synthesization replicates time and age trends previously found in data collected during the DONALD cohort study (1312 participants, 16 time points). The conducted privacy analyses are presented, which place a focus on the vulnerability of outliers.
RESULTS: The resulting privacy scores are discussed, which vary greatly between the different types of attacks.
CONCLUSION: Challenges encountered during their implementation and during the interpretation of their results are highlighted, and it is concluded that privacy risk assessment for synthetic data remains an open problem.
METHODS: Therefore, the recent privacy risk quantification framework Anonymeter has been built for evaluating multiple possible vulnerabilities, which are specifically based on privacy risks that are considered by the European Data Protection Board, i.e. singling out, linkability, and attribute inference. This framework was applied to a synthetic data generation study from the epidemiological domain, where the synthesization replicates time and age trends previously found in data collected during the DONALD cohort study (1312 participants, 16 time points). The conducted privacy analyses are presented, which place a focus on the vulnerability of outliers.
RESULTS: The resulting privacy scores are discussed, which vary greatly between the different types of attacks.
CONCLUSION: Challenges encountered during their implementation and during the interpretation of their results are highlighted, and it is concluded that privacy risk assessment for synthetic data remains an open problem.
Full text links
Related Resources
Trending Papers
Molecular Therapeutics for Diabetic Kidney Disease: An Update.International Journal of Molecular Sciences 2024 September 19
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app