Add like
Add dislike
Add to saved papers

Studying Privacy Aspects of Learned Knowledge Bases in the Context of Synthetic and Medical Data.

INTRODUCTION: Retrieving comprehensible rule-based knowledge from medical data by machine learning is a beneficial task, e.g., for automating the process of creating a decision support system. While this has recently been studied by means of exception-tolerant hierarchical knowledge bases (i.e., knowledge bases, where rule-based knowledge is represented on several levels of abstraction), privacy concerns have not been addressed extensively in this context yet. However, privacy plays an important role, especially for medical applications.

METHODS: When parts of the original dataset can be restored from a learned knowledge base, there may be a practically and legally relevant risk of re-identification for individuals. In this paper, we study privacy issues of exception-tolerant hierarchical knowledge bases which are learned from data. We propose approaches for determining and eliminating privacy issues of the learned knowledge bases.

RESULTS: We present results for synthetic as well as for real world datasets.

CONCLUSION: The results show that our approach effectively prevents privacy breaches while only moderately decreasing the inference quality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app