Add like
Add dislike
Add to saved papers

Classification of Veterinary Subjects in Medical Literature and Clinical Summaries.

INTRODUCTION: Human and veterinary medicine are practiced separately, but literature databases such as Pubmed include articles from both fields. This impedes supporting clinical decisions with automated information retrieval, because treatment considerations would not ignore the discipline of mixed sources. Here we investigate data-driven methods from computational linguistics for automatically distinguishing between human and veterinary medical texts.

METHODS: For our experiments, we selected language models after a literature review of benchmark datasets and reported performances. We generated a dataset of around 48,000 samples for binary text classification, specifically designed to differentiate between human medical and veterinary subjects. Using this dataset, we trained and fine-tuned classifiers based on selected transformer-based models as well as support vector machines (SVM).

RESULTS: All trained classifiers achieved more than 99% accuracy, even though the transformer-based classifiers moderately outperformed the SVM-based one.

DISCUSSION: Such classifiers could be applicable in clinical decision support functions that build on automated information retrieval.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app