We have located links that may give you full text access.
Higher tumor mutational burden and PD-L1 expression correlate with shorter survival in hematologic malignancies.
BACKGROUND: The prognostic implications of tumor mutational burden (TMB) and programmed death ligand 1 (PD-L1) expression are poorly studied in hematologic malignancies.
OBJECTIVES: This study aimed to better understand the characteristics and prognostic value of TMB and PD-1/PD-L1 in hematologic malignancies.
DESIGN: This real-world study was conducted among patients with hematologic malignancies who had next-generation sequencing (NGS) (Foundation Medicine) at the University of California San Diego Moores Cancer Center (2014-2018).
METHODS: TMB was measured by NGS. PD-L1 expression (tumor proportion score, TPS) was measured by immunohistochemistry (classified as high (⩾50%), low (1-49%), and negative (<1%)). Data was curated from the electronic medical records.
RESULTS: In 388 evaluable patients, the most common diagnoses were B-cell non-Hodgkin lymphoma (NHL) (35%) and Philadelphia chromosome-negative myeloproliferative disorders (16%). Median TMB was 1.6 mutations/Mb (range, 0-46.83). Forty-eight patients (12%) had TMB ⩾10 mutations/Mb, 90% of which were B-cell or T-cell NHL. In 85 samples with available PD-L1 scores, 11 were high; 26, low; and 48, no tumor cell expression. PD-L1 TPS positive (⩾1%) was most common in T-cell NHL (7/9 (77%) cases) followed by B-cell NHL (21/51 (41%) cases). TMB ⩾4 mutations/Mb and PD-L1 score ⩾1% were significantly associated with shorter overall survival (OS) from diagnosis, with hazard ratio (HR) = 1.46 ( p = 0.02, 95% confidence interval (CI) 1.05-2.03) and HR = 2.11 ( p = 0.04, 95% CI 1.04-4.30), respectively; the relationship was more pronounced when PD-L1 ⩾50% versus <50% was used (HR = 2.80, p = 0.02, 95% CI 1.19-6.59). Higher TMB and higher PD-L1 positivity correlation were significant but weak (Pearson correlation coefficient R 2 = 0.04, p = 0.04).
CONCLUSION: TMB ⩾4 mutations/Mb and positive PD-L1 TPS are poor prognostic factors, correlating with shorter OS across hematologic malignancies.
TRIAL REGISTRATION: ClinicalTrials.gov NCT02478931.
OBJECTIVES: This study aimed to better understand the characteristics and prognostic value of TMB and PD-1/PD-L1 in hematologic malignancies.
DESIGN: This real-world study was conducted among patients with hematologic malignancies who had next-generation sequencing (NGS) (Foundation Medicine) at the University of California San Diego Moores Cancer Center (2014-2018).
METHODS: TMB was measured by NGS. PD-L1 expression (tumor proportion score, TPS) was measured by immunohistochemistry (classified as high (⩾50%), low (1-49%), and negative (<1%)). Data was curated from the electronic medical records.
RESULTS: In 388 evaluable patients, the most common diagnoses were B-cell non-Hodgkin lymphoma (NHL) (35%) and Philadelphia chromosome-negative myeloproliferative disorders (16%). Median TMB was 1.6 mutations/Mb (range, 0-46.83). Forty-eight patients (12%) had TMB ⩾10 mutations/Mb, 90% of which were B-cell or T-cell NHL. In 85 samples with available PD-L1 scores, 11 were high; 26, low; and 48, no tumor cell expression. PD-L1 TPS positive (⩾1%) was most common in T-cell NHL (7/9 (77%) cases) followed by B-cell NHL (21/51 (41%) cases). TMB ⩾4 mutations/Mb and PD-L1 score ⩾1% were significantly associated with shorter overall survival (OS) from diagnosis, with hazard ratio (HR) = 1.46 ( p = 0.02, 95% confidence interval (CI) 1.05-2.03) and HR = 2.11 ( p = 0.04, 95% CI 1.04-4.30), respectively; the relationship was more pronounced when PD-L1 ⩾50% versus <50% was used (HR = 2.80, p = 0.02, 95% CI 1.19-6.59). Higher TMB and higher PD-L1 positivity correlation were significant but weak (Pearson correlation coefficient R 2 = 0.04, p = 0.04).
CONCLUSION: TMB ⩾4 mutations/Mb and positive PD-L1 TPS are poor prognostic factors, correlating with shorter OS across hematologic malignancies.
TRIAL REGISTRATION: ClinicalTrials.gov NCT02478931.
Full text links
Related Resources
Trending Papers
Looking for the ideal medication for heart failure with reduced ejection fraction: a narrative review.Frontiers in Cardiovascular Medicine 2024
2024 AHA/ACC/ACS/ASNC/HRS/SCA/SCCT/SCMR/SVM Guideline for Perioperative Cardiovascular Management for Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation 2024 September 24
Biomarkers in acute kidney injury.Annals of Intensive Care 2024 September 15
Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth.Diabetes Care 2024 September 9
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app