Add like
Add dislike
Add to saved papers

Monoexponential and advanced diffusion-weighted imaging for hepatic fibrosis staging based on high inter-examiner reliability.

OBJECTIVES: To determine the diagnostic efficiencies of multiple diffusion-weighted imaging (DWI) techniques for hepatic fibrosis (HF) staging under the premise of high inter-examiner reliability.

METHODS: Participants with biopsy-confirmed HF were recruited and divided into the early HF (EHF) and advanced HF (AHF) groups; healthy volunteers (HVs) served as controls. Two examiners analyzed intravoxel incoherent motion (IVIM) using the IVIM-DWI and diffusion kurtosis imaging (DKI) models. Intravoxel incoherent motion-DWI, DKI, and diffusion tensor imaging parameters with intraclass correlation coefficients (ICCs) of ≥0.6 were used to create regression models: HVs vs. EHF and EHF vs. AHF.

RESULTS: We enrolled 48 HVs, 59 EHF patients, and 38 AHF patients. Mean, radial, and axial kurtosis; fractional anisotropy; mean, radial, and axial diffusivity; and α exhibited excellent reliability (ICCs: 0.80-0.98). Fractional anisotropy of kurtosis, f, and apparent diffusion coefficient showed good reliability (ICCs: 0.69-0.92). The real (0.58-0.67), pseudo- (0.27-0.76), and distributed diffusion coefficients (0.58-0.67) showed low reliability. In the HVs versus (vs.) EHF model, α ( p =0.008) and ADC ( p =0.011) presented statistical differences (area under curve [AUC]: 0.710). In the EHF vs. AHF model, α ( p =0.04) and distributed diffusion coefficient ( p =0.02) presented significant differences (AUC: 0.758).

CONCLUSION: Under the premise of high inter-examiner reliability, DWI and IVIM-derived stretched-exponential model parameters may help stage HF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app