Add like
Add dislike
Add to saved papers

Facile incorporation of non-canonical heme ligands in myoglobin through chemical protein synthesis.

The incorporation of non-canonical amino acids (ncAAs) into the metal coordination environments of proteins has endowed metalloproteins with enhanced properties and novel activities, particularly in hemoproteins. In this work, we disclose a scalable synthetic strategy that enables the production of myoglobin (Mb) variants with non-canonical heme ligands, i.e., HoCys and f4Tyr. The ncAA-containing Mb* variants (with H64V/V68A mutations) were obtained through two consecutive native chemical ligations and a subsequent desulfurization step, with overall isolated yield up to 28.6 % in over 10-milligram scales. After refolding and heme b cofactor reconstitution, the synthetic Mb* variants showed typical electronic absorption bands. When subjected to the catalysis of the cyclopropanation of styrene, both synthetic variants, however, were not as competent as the His-ligated Mb*. We envisioned that the synthetic method reported herein would be useful for incorporating a variety of ncAAs with diverse structures and properties into Mb for varied purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app